
Derivatives–Part Two

Given a function z  fx,y and a point x0,y0 in its domain, there are infinitely many
directional derivatives for f at this point–one for every possible unit vector that we may place
at x0,y0. Of all these directional derivatives, two have special significance. Their
importance is partly due to certain properties and theorems related to them, but they are
also significant because these are the two that are easiest to find. The two special
directional derivatives are the derivative in the direction of i   1,0  and the derivative in
the direction of j   0,1 .
 Di fx0,y0 is known as the partial derivative of f with respect to x at x0,y0. It is

denoted fxx0,y0 or
f
x x0,y0 .

 Dj fx0,y0 is known as the partial derivative of f with respect to y at x0,y0. It is
denoted fyx0,y0 or

f
y x0,y0 .

Here is how we find fxx0,y0 :
1. Start with the formula expressing fx,y in terms of the two independent variables

x and y.
2. Treat y as if it were a constant, and differentiate the formula with respect to x.
3. Evaluate the resulting formula at the point x0,y0, i.e., substitute x0 in place of x

and y0 in place of y, then do the math.

Here is how we find fyx0,y0 :
1. Start with the formula expressing fx,y in terms of the two independent variables

x and y.
2. Treat x as if it were a constant, and differentiate the formula with respect to y.
3. Evaluate the resulting formula at the point x0,y0, i.e., substitute x0 in place of x

and y0 in place of y, then do the math.

Note that in the case of both partial derivatives, we must differentiate before we evaluate.
This is exactly the same principle we learned in Calculus I. For instance, say you want to
find the slope of the tangent line to the curve y  x3 at the point 2,8. You first differentiate
y with respect to x, giving you y  3x2. Then you substitute 2 for x, giving you
y  322  12. You cannot substitute 2 in place of x until after you have differentiated!

When finding either partial derivative, the result of Step 2 is a formula which, in general, will
involve both x and y. In any particular case, it is possible that either variable could drop out,
leaving a formula involving only one variable. It is even possible that both variables will drop
out, leaving a constant. However, the general case is a formula involving both x and y.
 When partially differentiating with respect to x, the result of Step 2 is denoted fxx,y

or f
x . For brevity, we may refer to this as fx. Since z  fx,y, we may write z

x in
place of f

x .
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 When partially differentiating with respect to y, the result of Step 2 is denoted fyx,y
or f

y . For brevity, we may refer to this as fy. Since z  fx,y, we may write z
y in

place of f
y .

For fx,y  x2  y2 :
 fxx,y  f

x  
x x

2  y2  Dxx2  y2  2x

 fyx,y  f
y  

y x
2  y2  Dyx2  y2  2y

 At the point 2,3, we get fx2,3  f
x 2,3  22  4 and

fy2,3  f
y 2,3  23  6. These are the same results we found ealier (but with

much more difficulty then).

We mentioned ealier that the surface z  x2  y2 has a tangent plane at the point 2,3,13,
and we showed that the equation of the tangent plane was 4x  6y  z  13. Note that the
coefficient of x is fx2,3 and the coefficient of y is fy2,3. Thus, the left side of the equation
can be expressed fx2,3x  fy2,3y  z. As we shall see later, this is a general rule: If a
function z  fx,y has a tangent plane at x0,y0, then the left side of the equation of the
tangent plane will be fxx0,y0x  fyx0,y0y  z. What about the right side of the equation?
In this case, it is simply z0. But that is not a general rule. In general, the right side may be
more complicated. We shall postpone further discussion of this topic until a later section.

The process of finding a partial derivative is known as partial differentiation.
 The process of partially differentiating with respect to x is symbolized by the partial

differentiation operator 
x or Dx.

 The process of partially differentiating with respect to y is symbolized by the partial
differentiation operator 

y or Dy.

For example, we can write 
x 5x

2  3xy  7y2  10x  3y, and
Dy5x2  3xy  7y2  3x  14y.

The prior example illustrates an important point. When partially differentiating with respect
to one variable, we treat the other variable as a constant, but how we deal with a constant
depends on whether it is a constant factor or a constant term. As we know from Calculus I,
when differentiating, a constant factor factors out, whereas a constant term drops out (i.e.,
goes to zero).

Let us further examine the function fx,y  x2  y2, but shift our attention from the point
2,3 to another point, let’s say the point 7,13. Then:
 fx7,13  f

x 7,13  27  14
 fy7,13  f

y 7,13  213  26

Let us now consider a completely fresh example:
z  fx,y  3x5  7x2y4  9y2  4x  6y  12.
 fxx,y  f

x  15x4  14xy4  4
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 fyx,y  f
y  28x2y3  18y  6

 fx6,2  f
x 6,2  18,100

 fy6,2  f
y 6,2  8,022

Partial differentiation may be used in concert with implicit differentiation. See Example 5 on
page 917.

The functions fxx,y and fyx,y are known as the first-order partial derivatives of f.
We can also find the second-order partial derivatives of f. To accomplish this, we
partially differentiate the first-order partial derivatives. Furthermore, we can find the
third-order partial derivatives of f. To accomplish this, we partially differentiate the
second-order partial derivatives. And so on ad infinitum.

In principle, f has four second-order partial derivatives:

1. 
x

f
x  2f

x2
 fxxx,y

2. 
y

f
x  2f

y x
 fxyx,y

3. 
x

f
y  2f

x y
 fyxx,y

4. 
y

f
y  2f

y2
 fyyx,y

For fx,y  x2  y2, since fxx,y  2x and fyx,y  2y, we will have fxxx,y  2, fxyx,y  0,
fyxx,y  0, and fyyx,y  2.

For fx,y  3x5  7x2y4  9y2  4x  6y  12, since fxx,y  15x4  14xy4  4 and
fyx,y  28x2y3  18y  6, we will have fxxx,y  60x3  14y4, fxyx,y  56xy3,
fyxx,y  56xy3, and fyyx,y  84x2y2  18.

In both of the above examples, we had fxyx,y  fyxx,y. This is not a coincidence. So
long as fxyx,y and fyxx,y are both continuous in an open region, then fxyx,y  fyxx,y in
that region. This is known as Clairaut’s Theorem.

The Gradient Vector

Our next goal is to find an efficient means for calculating directional derivatives for unit
vectors other than i or j. To accomplish this, we must introduce a key concept, known as
the gradient vector.

For any function fx,y, its gradient vector is denoted f, and is defined as
f   fxx,y, fyx,y    f

x ,
f
y . If this vector is evaluated at a point x0,y0, we obtain

fx0,y0   fxx0,y0, fyx0,y0 .

For fx,y  x2  y2, f   2x, 2y , so f2,3   4,6  and f7,13   14,26 .

3



For the function fx,y  3x5  7x2y4  9y2  4x  6y  12,
f   15x4  14xy4  4,28x2y3  18y  6 , so f6,2   18,100, 8, 022 .

For any unit vector u, if we wish to find Du fx0,y0, simply compute the dot product of u and
fx0,y0. In other words, Du fx0,y0  u  fx0,y0.

For instance, if fx,y  x2  y2 and u   0.6,0. 8 , then Du f2,3   0.6,0. 8    4,6 
 2.4  4.8  7.2.

We already had this result. Let’s find a directional derivative where we don’t already know
the answer. If fx,y  x2  y2 and u   1

2
, 1

2
, then Du f2,3   1

2
, 1

2
   4,6  

4

2
 6

2
 2

2
, or  2 .

For the function fx,y  x2  y2, f7,13   14,26 . Let us use this to calculate two
directional derivatives at 7,13.
 For u   0.6,0. 8 , Du f7,13   0.6,0. 8    14,26   8.4  20.8  12.4
 For u   1

2
, 1

2
, Du f7,13   1

2
, 1

2
   14,26   14

2
 26

2
 40

2
, or

20 2 .

For the function fx,y  3x5  7x2y4  9y2  4x  6y  12, f6,2   18,100, 8, 022 . Let
us use this to calculate one of its directional derivatives at 6,2.
 For u   1

2 ,
3
2 , Du f6,2   1

2 ,
3
2    18,100, 8,022   9,050  4,011 3
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